Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
J Mech Behav Biomed Mater ; 155: 106552, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38701678

ABSTRACT

This study aimed to evaluate and compare the mechanical properties of dental training teeth with subtractive and additive computer-aided design/computer-aided manufacturing (CAD/CAM) materials used to fabricate dental simulation models. Therefore, the three-axis load generated during cutting movements, including drilling and milling performed using a dental handpiece, was measured and compared. The samples were cut vertically downward by 1.5 mm, horizontally by 6 mm, and vertically upward at a constant speed (1 mm/s), while the rotational speed of the bur was maintained at 200,000 rotations per minute. A three-axis load cell was used to measure the X-, Y-, and Z-axis loads on the specimen. The median value of the X-, Y-, and Z-axis measurements and the resultant load during the vertical-downward, horizontal, and vertical-upward movements were compared using a one-way analysis of variance and Tukey's post hoc test. For vertical downward movement, the drilling force of the dental training teeth was lower than that of Vita Enamic® and similar to that of Lava™ Ultimate. In contrast to subtractive CAD/CAM blocks, the drilling force of the dental training teeth was higher than that of 3D-printed resin blocks. Regarding horizontal movement, the milling force of dental training teeth was lower than that of Vita Enamic®. In contrast, the milling force of Nissin was similar to that of Lava™ Ultimate, while that of Frasaco was lower. Furthermore, compared to additive CAD/CAM blocks, the milling force of the dental training teeth was higher than that of 3D-printed resin blocks. Regarding vertical upward movement, the resultant loads of dental training teeth was lower than that of Vita Enamic®. Similarly, the resultant load of Nissin was similar to that of Lava™ Ultimate, while that of Frasaco was lower. Additionally, compared to additive CAD/CAM blocks, the resultant loads of the dental training teeth were similar to those of the 3D-printed resin blocks.

2.
Sci Rep ; 14(1): 9909, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38688952

ABSTRACT

Three-dimensional (3D) printing, otherwise known as additive manufacturing in a non-technical context, is becoming increasingly popular in the field of dentistry. As an essential step in the 3D printing process, postwashing with organic solvents can damage the printed resin polymer and possibly pose a risk to human health. The development of water-washable dental resins means that water can be used as a washing agent. However, the effects of washing agents and washing times on the mechanical and biocompatibility properties of water-washable resins remain unclear. This study investigated the impact of different washing agents (water, detergent, and alcohol) and washing time points (5, 10, 20, and 30 min) on the flexural strength, Vickers hardness, surface characterization, degree of conversion, biocompatibility, and monomer elution of 3D printed samples. Using water for long-term washing better preserved the mechanical properties, caused a smooth surface, and improved the degree of conversion, with 20 min of washing with water achieving the same biological performance as organic solvents. Water is an applicable agent option for washing the 3D printing water-washable temporary crown and bridge resin in the postwashing process. This advancement facilitates the development of other water-washable intraoral resins and the optimization of clinical standard washing guidelines.


Subject(s)
Biocompatible Materials , Materials Testing , Printing, Three-Dimensional , Water , Water/chemistry , Biocompatible Materials/chemistry , Materials Testing/methods , Humans , Resins, Synthetic/chemistry , Hardness , Crowns , Surface Properties
3.
Int J Med Sci ; 21(4): 644-655, 2024.
Article in English | MEDLINE | ID: mdl-38464836

ABSTRACT

Vascular dementia (VD) is the second most prevalent dementia type, with no drugs approved for its treatment. Here, the effects of Banhabaekchulcheonma-Tang (BBCT) on ischemic brain injury and cognitive function impairment were investigated in a bilateral carotid artery stenosis (BCAS) mouse model. Mice were divided into sham-operated, BCAS control, L-BBCT (40 ml/kg), and H-BBCT (80 ml/kg) groups. BBCT's effects were characterized using the Y-maze test, novel object recognition test (NORT), immunofluorescence staining, RNA sequencing, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) analyses. The NORT revealed cognitive function improvement in the H-BBCT group, while the Y-maze test revealed no significant difference among the four groups. The CD68+ microglia and GFAP+ astrocyte numbers were reduced in the H-BBCT group. Furthermore, H-BBCT treatment restored the dysregulation of gene expression caused by BCAS. The major BBCT targets were predicted to be cell division cycle protein 20 (CDC20), Epidermal growth factor (EGF), and tumor necrosis factor receptor-associated factor 1 (TRAF1). BBCT regulates the neuroactive ligand-receptor interaction and neuropeptide signaling pathways, as predicted by KEGG and GO analyses, respectively. BBCT significantly improved cognitive impairment in a BCAS mouse model by inhibiting microglial and astrocyte activation and regulating the expression of CDC20, EGF, TRAF1, and key proteins in the neuroactive ligand-receptor interaction and neuropeptide signaling pathways.


Subject(s)
Brain Injuries , Brain Ischemia , Carotid Stenosis , Cognitive Dysfunction , Neuropeptides , Animals , Mice , Carotid Stenosis/complications , Carotid Stenosis/drug therapy , Epidermal Growth Factor/metabolism , Ligands , TNF Receptor-Associated Factor 1/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Cognition , Disease Models, Animal , Neuropeptides/metabolism , Mice, Inbred C57BL
4.
J Mech Behav Biomed Mater ; 149: 106221, 2024 01.
Article in English | MEDLINE | ID: mdl-37976994

ABSTRACT

OBJECTIVES: This study evaluated the repairability of three-dimensional printed (3DP) denture bases based on different conventional relining materials and aging. MATERIAL AND METHODS: The groups for surface characterization (surface-roughness and contact-angle measurements) were divided based on the denture base and surface treatment. Shear bond strength test and failure-mode analysis were conducted by a combination of three variables: denture base, relining materials, and hydrothermal aging (HA). The initial characterization involved quantifying the surface roughness (n = 10) and contact angle (n = 10) of denture base specimens with and without sandblasting (SB) treatment. Four relining materials (Kooliner [K], Vertex Self-Curing [V], Tokuyama Rebase II (Normal) [T], and Ufi Gel Hard [U]) were applied to 3DP, heat-cured (HC), and self-cured (SC) denture-base resin specimens. Shear bond strength (n = 15) and failure-mode analyses (n = 15) were performed before and after HA, along with evaluations of the fractured surfaces (n = 4). Statistical analyses were performed using a two-way analysis of variance (ANOVA) for surface characterization, and a three-way ANOVA was conducted for shear bond strength. RESULTS: The surface roughness peaked in HC groups and increased after SB. The 3DP group displayed significantly lower contact angles, which increased after treatment, similar to the surface roughness. The shear bond strength was significantly lower for 3DP and HC denture bases than for SC denture bases, and peaked for U at 10.65 ± 1.88 MPa (mean ± SD). HA decreased the shear bond strength relative to untreated samples. Furthermore, 3DP, HC, and SC mainly showed mixed or cohesive failures with V, T, and U. K, on the other hand, trended toward adhesive failures when bonded with HC and SC. CONCLUSION: This study has validated the repairability of 3DP dentures through relining them with common materials used in clinical practice. The repairability of the 3DP denture base was on par with that of conventional materials, but it decreased after aging. Notably, U, which had a postadhesive application, proved to be the most effective material for repairing 3DP dentures.


Subject(s)
Dental Bonding , Denture Bases , Materials Testing , Adhesives , Shear Strength , Printing, Three-Dimensional , Surface Properties
5.
J Mech Behav Biomed Mater ; 143: 105906, 2023 07.
Article in English | MEDLINE | ID: mdl-37178635

ABSTRACT

The use of digital manufacturing, particularly additive manufacturing using three-dimensional (3D) printing, is expanding in the field of dentistry. 3D-printed resin appliances must undergo an essential process, post-washing, to remove residual monomers; however, the effect of the washing solution temperature on the biocompatibility and mechanical properties remains unclear. Therefore, we processed 3D-printed resin samples under different post-washing temperatures (without temperature control (N/T), 30 °C, 40 °C, and 50 °C) for different durations (5, 10, 15, 30, and 60 min) and evaluated the degree of conversion rate, cell viability, flexural strength, and Vickers hardness. Increasing the washing solution temperature significantly improved the degree of conversion rate and cell viability. Conversely, increasing the solution temperature and time decreased the flexural strength and microhardness. This study confirmed that the washing temperature and time influence the mechanical and biological properties of the 3D-printed resin. Washing 3D-printed resin at 30 °C for 30 min was most efficient to maintain optimal biocompatibility and minimize changes of mechanical properties.


Subject(s)
Printing, Three-Dimensional , Resins, Synthetic , Materials Testing , Temperature , Surface Properties
6.
Exp Mol Med ; 55(5): 952-964, 2023 05.
Article in English | MEDLINE | ID: mdl-37121971

ABSTRACT

Epigenetic alterations, especially histone methylation, are key factors in cell migration and invasion in cancer metastasis. However, in lung cancer metastasis, the mechanism by which histone methylation regulates metastasis has not been fully elucidated. Here, we found that the histone methyltransferase SMYD2 is overexpressed in lung cancer and that knockdown of SMYD2 could reduce the rates of cell migration and invasion in lung cancer cell lines via direct downregulation of SMAD3 via SMYD2-mediated epigenetic regulation. Furthermore, using an in vitro epithelial-mesenchymal transition (EMT) system with a Transwell system, we generated highly invasive H1299 (In-H1299) cell lines and observed the suppression of metastatic features by SMYD2 knockdown. Finally, two types of in vivo studies revealed that the formation of metastatic tumors by shSMYD2 was significantly suppressed. Thus, we suggest that SMYD2 is a potential metastasis regulator and that the development of SMYD2-specific inhibitors may help to increase the efficacy of lung cancer treatment.


Subject(s)
Histones , Lung Neoplasms , Humans , Histones/metabolism , Histone Methyltransferases/metabolism , Epigenesis, Genetic , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Cell Proliferation , Lung Neoplasms/genetics , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Smad3 Protein/genetics , Smad3 Protein/metabolism
7.
J Prosthet Dent ; 129(1): 69-75, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35985854

ABSTRACT

STATEMENT OF PROBLEM: Despite the introduction of intraoral scanners (IOSs) with dual camera triangulation, only a few comparative clinical studies have evaluated their clinical performances in the digital workflow for cast-free restorations. PURPOSE: The purpose of this clinical trial was to assess the clinical efficacy of 2 different technology-based IOSs by evaluating the marginal and internal gaps of cast-free monolithic zirconia crowns fabricated by using a fully digital workflow. MATERIAL AND METHODS: A prospective randomized clinical trial was conducted in 35 participants requiring a single-unit restoration. One crown was fabricated from the scan data obtained with a confocal microscopy-based IOS (Group T), while the other was made with the scan data obtained from an IOS using dual camera triangulation (Group I). A replica technique was used to assess the marginal and internal gaps. The buccolingual and mesiodistal cross-sections were measured, and noninferiority trials were performed. RESULTS: A total of 39 teeth from 35 participants were restored with a single-unit crown. The marginal and axial wall gaps of the crowns in Group I was not inferior to that of the crowns in Group T (upper limit confidence interval [CI] <30). In contrast, the gap of the crowns at the line angle in Group T was inferior to that of the crowns in Group I (lower limit CI <-30). From an occlusal space perspective, the gap of the crowns in Group I was inferior to that of the crowns in Group T (upper limit CI >30). Twenty-five crowns were selected from Group I, and 14 crowns were selected from Group T for definitive placement. CONCLUSIONS: The marginal gap of the crown fabricated by using the scan data obtained from the dual camera triangulation-based IOS was noninferior to that obtained from the confocal microscopy-based IOS and was within the clinically applicable limit.


Subject(s)
Computer-Aided Design , Dental Prosthesis Design , Humans , Prospective Studies , Dental Marginal Adaptation , Dental Impression Technique , Crowns
8.
Article in English | MEDLINE | ID: mdl-36554572

ABSTRACT

Insomnia is a common health problem that can lead to various diseases and negatively impact quality of life. Pharmacopuncture is a new type of acupuncture that involves applying herbal medicine extracts to acupoints. Korean medicine doctors frequently use it to treat insomnia disorder. However, there is insufficient evidence to support the effectiveness and safety of pharmacopuncture for insomnia disorder. We designed a pragmatic randomized controlled trial to compare the effectiveness of pharmacopuncture and acupuncture for insomnia disorder. This multi-site, randomized, acupuncture-controlled trial will enroll 138 insomnia patients. The subjects will be randomly assigned to one of two groups, pharmacopuncture or acupuncture, at a 2:1 ratio. For 4 weeks, the participants will receive ten sessions of pharmacopuncture or acupuncture treatment and will be followed up for 4 weeks after the treatment ends. The Pittsburgh Sleep Quality Index score is the primary outcome measure. Insomnia severity index score, sleep parameters recorded using actigraphy and sleep diaries, physical symptoms associated with insomnia, emotions, quality of life, medical costs, and safety are the secondary outcome measures. The findings of this trial willprovide evidence that will be useful in clinical decision-making for insomnia treatment strategies.


Subject(s)
Acupuncture Therapy , Acupuncture , Sleep Initiation and Maintenance Disorders , Humans , Sleep Initiation and Maintenance Disorders/therapy , Quality of Life , Acupuncture Therapy/methods , Sleep , Treatment Outcome , Randomized Controlled Trials as Topic
9.
J Mech Behav Biomed Mater ; 136: 105537, 2022 12.
Article in English | MEDLINE | ID: mdl-36327665

ABSTRACT

The aim of this study was to determine the color stability of 3D printed resin according to the post-curing conditions (polymerization conditions and temperature). Specimens were post-polymerized under different conditions of oxygen inhibition, such as on glycerin immersion (GLY), medium-low vacuum environment (VA), and oxygen contact (CON, the control group), and temperature (35 °C, 60 °C, and 80 °C). The degree of conversion (DC), water sorption (Wsp) and solubility (Wsl), surface roughness (Ra) were measured. Additionally, surface free energy (SFE), pH values of colorants were measured. Grape juice (grape), coffee, and curry were used as the colorants, and distilled water (DW) was used as a control. And the color value was measured before and after immersion using a spectrophotometer. Then, Calculated the color change. For statistical methods, The Shapiro-Wilk test performed to check for normality revealed that the data presented a normal distribution (p>0.05). ΔE values were analyzed using three-way ANOVA. DC, Wsp, Wsl, SFE, and Ra were analyzed using two-way ANOVA. To confirm the linear correlation, Pearson's correlation coefficient was determined. The threshold for significance (p) was set at 0.05 (95% confidence interval) for all tests. DC was the highest at 80 °C in the GLY group (95.08 ± 4.88%). And Wsl decreased with increasing temperature, and was lowest at 80 °C in the GLY group (0.46 ± 0.30 um/mm3). After the colorants were immersed for 30 days, as the temperature increased, ΔE decreased in the GLY group but not in the VA and CON groups, and was the lowest at 80 °C in the GLY group: (DW, 0.95 ± 0.45 [mean± SD]; grape, 6.45± 0.69; coffee, 4.50± 0.56; curry, 9.37± 1.40). There was also a significant inverse relation between DC and ΔE. A significant inverse relation was found between Wsl and DC, and a significant positive correlation was found between Wsl and ΔE. Wsp, SFE, and Ra did not affect color stability. In the post-polymerization process, increasing the temperature and GLY were effective in reducing ΔE, which was lowest at 80 °C in the GLY group. It was also observed that a complex mechanism between the DC, Wsl of 3D printed resin affects ΔE of the resin.


Subject(s)
Coffee , Composite Resins , Color , Temperature , Polymerization , Materials Testing , Water , Printing, Three-Dimensional , Surface Properties
10.
Healthcare (Basel) ; 10(11)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36360498

ABSTRACT

(1) Insomnia is associated with poor quality of life and loss of productivity, and is a significant economic burden on society. Gamiguibi-tang (GGBT) is the most frequently prescribed herbal medicine for insomnia treatment. Hwangryunhaedok-tang (HHT) is used as an insured herbal medicine for insomnia in the Korean National Health Insurance (NHI) system. This study aims to evaluate the cost-effectiveness of GGBT versus HHT in patients with insomnia disorders based on clinical trial data; (2) Methods: The EuroQol five-dimension scale (EQ-5D) was used to estimate quality-adjusted life-years (QALY). Direct and non-direct medical costs and lost productivity costs were estimated. The cost-effectiveness of GGBT was compared with HHT treatments over six weeks from a societal perspective; (3) Results: A total of 81 patients who underwent GGBT (n = 56) and HHT (n = 25) treatment completed the clinical trial. The EQ-5D score improved significantly more in the GGBT than in the HHT group (0.02 vs. −0.03, p < 0.05). The QALYs for six weeks were slightly greater in GGBT (0.0997) than in the HHT group (0.0987); however, the total costs incurred were approximately 9% less in GGBT ($934) than in the HHT group ($1029). GGBT was found to be a more economically dominant treatment option compared to HHT for treating insomnia; (4) Conclusions: Among herbal medicines, GGBT may be a cost-effective option for treating insomnia from a societal perspective in Korea.

11.
Materials (Basel) ; 15(19)2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36234230

ABSTRACT

This study evaluated the effects of the light intensity of curing and the post-curing duration on the mechanical properties and accuracy of the interim dental material. After designing the specimen, 3D printing was performed, and the light intensity was divided into groups G20, G60, G80, and G120 (corresponding to 1.4−1.6, 2.2−3.0, 3.8−4.4, and 6.4−7.0 mW/cm2, respectively), with no post-curing or 5, 10, or 20 min of post-curing being performed. The flexural properties, Vickers microhardness, degree of conversion (DC), and 3D accuracy were then evaluated. The flexural properties and Vickers microhardness showed a sharp increase at the beginning of the post-curing and then tended to increase gradually as the light intensity and post-curing time increased (p < 0.001). On the other hand, there was no significant difference between groups in the accuracy analysis of a 3D-printed three-unit bridge. These results indicate that the light intensity of the post-curing equipment influences the final mechanical properties of 3D-printed resin and that post-curing can be made more efficient by optimizing the light intensity and post-curing time.

12.
Dent Mater ; 38(11): 1812-1825, 2022 11.
Article in English | MEDLINE | ID: mdl-36192277

ABSTRACT

OBJECTIVES: This study aimed to determine the effects of the postwashing method and time on the mechanical properties and biocompatibility of three-dimensional (3D) printed crown and bridge resin. METHODS: DLP (digital light processing)-printed specimens produced from Nextdent crown & bridge (C&B) resins were washed separately using an ultrasonic bath and rotary washer with TPM (tripropylene glycol monomethyl ether) for 3 min, 6 min, 10 min, 20 min, and 1 h. Postcuring was applied for 30 min to each specimen after the washing process. The flexural strength, Vickers hardness, water sorption and solubility, degree of conversion (DC), elution of residual monomers, and biocompatibility of the specimens were evaluated. RESULTS: The ultrasonic bath showed greater washing efficacy by reducing the residual HEMA (2-hydroxyethyl methacrylate) from 2.0634 ppm to 0.1456 ppm and reducing the residual TEGDMA (triethylene glycol dimethacrylate) from 1.4862 ppm to 0.1484 ppm. With prolonged washing, the flexural strength significantly decreased from 129.67 ± 6.66 MPa (mean±standard deviation) to 103.17 ± 7.20 MPa, while the Vickers hardness increased slightly for the first 6 min and then decreased thereafter significantly. The DC was 87.78 ± 1.34% after 3 min and then gradually decreased with extended washing time. The cytotoxicity significantly decreases with the increment of the washing time. SIGNIFICANCE: The washing effect on the elution of residual monomers was better for an ultrasonic bath than for a rotary washer. Extending the washing time reduces the mechanical properties and cytotoxicity of the Nextdent C&B resin.


Subject(s)
Composite Resins , Crowns , Ethers , Materials Testing , Methacrylates , Polyethylene Glycols , Polymethacrylic Acids , Printing, Three-Dimensional , Water
13.
Cell Biosci ; 12(1): 110, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35869491

ABSTRACT

BACKGROUND: Spastin significantly influences microtubule regulation in neurons and is implicated in the pathogenesis of hereditary spastic paraplegia (HSP). However, post-translational regulation of the spastin protein remains nebulous. The association between E3 ubiquitin ligase and spastin provides a potential therapeutic strategy. RESULTS: As evidenced by protein chip analysis, FBXL17 inversely correlated with SPAST-M1 at the protein level in vitro and, also in vivo during embryonic developmental stage. SPAST-M1 protein interacted with FBXL17 specifically via the BTB domain at the N-terminus of SPAST-M1. The SCFFBXL17 E3 ubiquitin ligase complex degraded SPAST-M1 protein in the nuclear fraction in a proteasome-dependent manner. SPAST phosphorylation occurred only in the cytoplasmic fraction by CK2 and was involved in poly-ubiquitination. Inhibition of SCFFBXL17 E3 ubiquitin ligase by small chemical and FBXL17 shRNA decreased proteasome-dependent degradation of SPAST-M1 and induced axonal extension. The SPAST Y52C mutant, harboring abnormality in BTB domain could not interact with FBXL17, thereby escaping protein regulation by the SCFFBXL17 E3 ubiquitin ligase complex, resulting in loss of functionality with aberrant quantity. Although this mutant showed shortening of axonal outgrowth, low rate proliferation, and poor differentiation capacity in a 3D model, this phenotype was rescued by inhibiting SCFFBXL17 E3 ubiquitin ligase. CONCLUSIONS: We discovered that a novel pathway, FBXL17-SPAST was involved in pathogenicity of HSP by the loss of function and the quantitative regulation. This result suggested that targeting FBXL17 could provide new insight into HSP therapeutics.

14.
Cell Prolif ; 55(9): e13284, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35723171

ABSTRACT

OBJECTIVES: The skin exhibits tremendous regenerative potential, as different types of progenitor and stem cells regulate skin homeostasis and damage. However, in vitro primary keratinocytes present with several drawbacks, such as high donor variability, short lifespan, and limited donor tissue availability. Therefore, more stable primary keratinocytes are needed to generate multiple uniform in vitro and in vivo skin models. RESULTS: We identified epidermal progenitor cells from primary keratinocytes using Integrin beta 1 (ITGB1) an epidermal stem cell marker markedly decreased after senescence in vitro. Epidermal progenitor cells exhibited unlimited proliferation and the potential for multipotent differentiation capacity. Moreover, they could completely differentiate to form an organotypic skin model including conversed mesenchymal cells in the dermis and could mimic the morphologic and biochemical processes of human epidermis. We also discovered that proliferation and the multipotent differentiation capacity of these cells relied on ITGB1 expression. Eventually, we examined the in vitro and in vivo wound healing capacity of these epidermal progenitor cells. CONCLUSIONS: Overall, the findings suggest that these stable and reproducible cells can differentiate into multiple lineages, including human skin models. They are a potentially powerful tool for studying skin regeneration, skin diseases, and are an alternative for in vivo experiments.


Subject(s)
Epidermal Cells , Skin , Cell Differentiation , Epidermal Cells/metabolism , Epidermis/metabolism , Humans , Integrin beta1/metabolism , Keratinocytes/metabolism , Skin/metabolism , Stem Cells
15.
J Mech Behav Biomed Mater ; 130: 105170, 2022 06.
Article in English | MEDLINE | ID: mdl-35334279

ABSTRACT

The photosensitive resin used in additive manufacturing is cured by free radical polymerization by UV irradiation. However, undesired reaction with oxygen during polymerization inhibits polymerization and results in an under-cured polymer. Therefore, in this study, the hypothesis that successful oxygen shielding in the post-polymerization step could affect the properties of the final polymer was tested. 3D printed specimens using denture base resin were post polymerized either by immersion in glycerin for oxygen shielding (GL group) or placed in a medium-low vacuum chamber at 5 × 10-2 Torr (VA group). Specimens cured with no additional conditioning served as the control (CON group). To consider the effect of temperature, all groups were additionally compared with 80 °C and without an increase in temperature (room temperature) during post-polymerization. Fourier transform infrared spectroscopy was used to measure the monomer conversion ratios between different groups. In addition, the mechanical properties were quantified by the micro-hardness, flexural strength, and elasticity of the surface, and the water sorption and solubility. Dynamic mechanical analysis (DMA) was conducted to observe the trend in storage and loss modulus between the groups against temperature. Differences in the surface as a function of the post-polymerization conditions were qualitatively observed by scanning electron microscopy (SEM). The result shows that oxygen shielding during post-polymerization showed an increase in the degree of conversion (DC) and hardness of the resin surface. The highest DC was observed for GL group specimens at both room temperature and 80 °C. This result was confirmed by the SEM micrographs of the resin surface, where the interface between the layers of the GL group structure becomes more robust. However, a difference was observed between the samples prepared at room temperature and 80 °C. The flexural modulus was highest in the GL group, followed by the VA group, and lowest in the CON group at 80 °C. No difference in water absorption was observed for any groups, but high water solubility was observed in the GL group at room temperature. Overall, more significant differences in the properties were observed for the samples post-polymerized at 80 °C than at room temperature. The results of DMA analysis to determine the glass transition temperature showed a similar trend in all groups, and the storage modulus and loss rate obtained in the same experiment decreased in the order of GL, CON, and VA. In conclusion, an oxygen shielded post-polymerization environment at elevated temperature effectively improves the mechanical properties of photosensitive resin.


Subject(s)
Glycerol , Oxygen , Composite Resins , Hardness , Materials Testing , Polymerization , Polymers/chemistry , Printing, Three-Dimensional , Surface Properties , Temperature , Vacuum , Water/chemistry
16.
J Mech Behav Biomed Mater ; 128: 105127, 2022 04.
Article in English | MEDLINE | ID: mdl-35182913

ABSTRACT

This study analyzed the flexural properties, Vickers hardness, degree of conversion (DC), and cell viability of 3D printed crown and bridge resin postcured using various types of postcuring equipment (PCE). 3D printed specimens were postcured for various times using different types of 3D printing PCE [for 5, 15, and 30 min using LC 3D Print Box (LC), Form Cure (FC), Cure M (CM), and Veltz 3D (VE) devices] and the VALO handheld light-curing (VA) device for 20, 40, and 60 s. Neither the flexural strength (132.27-145.79 MPa) nor the flexural modulus (1.52-1.83 GPa) differed significantly when postcuring for 30 min using the LC, FC, CM, or VE device, or for 20, 40, or 60 s of postcuring using the VA device (p > 0.05). The Vickers hardness was highest after 30 min of postcuring for all groups, and varied significantly with the postcuring time in the LC (p < 0.001) and CM (p < 0.001) groups. DC was significantly higher for the 5-min CM group (84.97 ± 4.02%) than for the GS, 30-min FC, 5-min VE, and 20-s VA groups. Cell viability of the postcured resin specimens was 56.46-92.29%, and varied significantly in the CM and VE groups according to the postcuring time (p < 0.05). Confocal laser scanning microscopy observations showed well-developed cell morphology and numerous cell-cell contacts in all groups except the GS group. This study found that the use of different types of PCE did not significantly affect the flexural properties of 3D printed crown and bridge resin, whereas there were significant variations in DC, Vickers hardness, and cell viability.


Subject(s)
Crowns , Flexural Strength , Composite Resins , Materials Testing , Printing, Three-Dimensional , Surface Properties
17.
Article in English | MEDLINE | ID: mdl-35162777

ABSTRACT

Post-stroke insomnia (PSI) is a highly prevalent complication after stroke. Current evidence of psychotropic drug use for PSI management is scarce and indicates harmful adverse events (AEs). Traditional East Asian herbal medicine is a widely used traditional remedy for insomnia. However, so far, no study has systematically reviewed the efficacy and safety of traditional east asian herbal medicine (HM) for PSI. Therefore, we perform meta-analysis to evaluate the effectiveness and safety of HM for PSI. After a comprehensive electronic search of 15 databases, we review the randomized controlled trials (RCTs) of HM use as monotherapy for PSI. Our outcomes were the Pittsburgh sleep quality index and total effective rate. In total, 24 RCTs were conducted with 1942 participants. HM showed statistically significant benefits in sleep quality. It also appeared to be safer than psychotropic drugs in terms of AEs, except when the treatment period was two weeks. The methods used for RCTs were poor, and the quality of evidence assessed was graded "low" or "moderate." The findings of this review indicate that the use of HM as a monotherapy may have potential benefits in PSI treatment when administered as an alternative to conventional medications. However, considering the methodological quality of the included RCTs, we were uncertain of the clinical evidence. Further, well-designed RCTs are required to confirm these findings.


Subject(s)
Drugs, Chinese Herbal , Sleep Initiation and Maintenance Disorders , Stroke , Data Management , Drugs, Chinese Herbal/therapeutic use , Herbal Medicine/methods , Humans , Randomized Controlled Trials as Topic , Sleep Initiation and Maintenance Disorders/complications , Sleep Initiation and Maintenance Disorders/etiology , Stroke/complications , Stroke/drug therapy
18.
ISME J ; 16(5): 1205-1221, 2022 05.
Article in English | MEDLINE | ID: mdl-34972816

ABSTRACT

The human microbiome plays an essential role in the human immune system, food digestion, and protection from harmful bacteria by colonizing the human intestine. Recently, although the human microbiome affects colorectal cancer (CRC) treatment, the mode of action between the microbiome and CRC remains unclear. This study showed that propionate suppressed CRC growth by promoting the proteasomal degradation of euchromatic histone-lysine N-methyltransferase 2 (EHMT2) through HECT domain E3 ubiquitin protein ligase 2 (HECTD2) upregulation. In addition, EHMT2 downregulation reduced the H3K9me2 level on the promoter region of tumor necrosis factor α-induced protein 1 (TNFAIP1) as a novel direct target of EHMT2. Subsequently, TNFAIP1 upregulation induced the apoptosis of CRC cells. Furthermore, using Bacteroides thetaiotaomicron culture medium, we confirmed EHMT2 downregulation via upregulation of HECTD2 and TNFAIP1 upregulation. Finally, we observed the synergistic effect of propionate and an EHMT2 inhibitor (BIX01294) in 3D spheroid culture models. Thus, we suggest the anticancer effects of propionate and EHMT2 as therapeutic targets for colon cancer treatment and may provide the possibility for the synergistic effects of an EHMT2 inhibitor and microbiome in CRC treatment.


Subject(s)
Colorectal Neoplasms , Microbiota , Ubiquitin-Protein Ligases/metabolism , Histocompatibility Antigens/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Propionates , Up-Regulation
19.
J Prosthet Dent ; 127(6): 827-831, 2022 Jun.
Article in English | MEDLINE | ID: mdl-33541819

ABSTRACT

In studies that assessed the accuracy of implant surgical guides, evaluations were based on the placement position of the implant by using a manufactured surgical guide. However, such assessments could involve errors that may occur during implant placement. Therefore, evaluating the 3-dimensional accuracy of the fabrication of the implant surgical guide itself is not enough. In the evaluation method described in this article, location-related information is obtained by connecting a scan body to the sleeve of the surgical guide instead of directly placing the implant. This helps to evaluate the accuracy of the surgical guide without errors in the placement of an implant.


Subject(s)
Dental Implants , Surgery, Computer-Assisted , Computer-Aided Design , Cone-Beam Computed Tomography , Dental Implantation, Endosseous/methods , Imaging, Three-Dimensional
20.
Materials (Basel) ; 14(20)2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34683773

ABSTRACT

During the three-dimensional (3D) printing process of a dental prosthesis, using photopolymer resin, partially polymerized resin is further cured through the postcuring process that proceeds after the printing, which improves the stability of the printed product. The mechanical properties of the end product are known to be poor if the postcuring time is insufficient. Therefore, this study evaluated the effect of the postcuring time of the 3D-printed denture base on its dimensional stability, according to the aging period. The 3D prints were processed after designing maxillary and mandibular denture bases, and after the following postcuring times were applied: no postcuring, and 5, 15, 30, and 60 min. The dimensional stability change of the denture base was evaluated and analyzed for 28 days after the postcuring process. The trueness analysis indicated that the mandibular denture base had lower output accuracy than the maxillary denture base, and the dimensional stability change increased as postcuring progressed. In the no postcuring group for the mandible, the error value was 201.1 ± 5.5 µm (mean ± standard deviation) after 28 days, whereas it was 125.7 ± 13.0 µm in the 60 min postcuring group. For both the maxilla and the mandible, shorter postcuring times induced larger dimensional stability changes during the aging process. These findings indicate that in order to manufacture a denture base with dimensional stability, a sufficient postcuring process is required during the processing stage.

SELECTION OF CITATIONS
SEARCH DETAIL
...